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Introduction

The purpose of this course is to cover aspects of R programming that are either unlikely to be 
covered  elsewhere  or  likely  to  be  surprising  for  programmers  who  have  worked  with  other 
languages. The course thus tries not be comprehensive but sort of complementary to other sources 
of information. Also, the material needed to by compiled in short time and perhaps suffers from 
important omissions. For the same reason, potential participants should not expect a fully fleshed 
out  presentation  but  a  combination  of  a  text-only  document  (this  one)  with  example  code 
comprising the solutions of the exercises.

The topics covered include R's general features as a programming language, a recapitulation of R's 
type system, advanced coding of functions, error handling, the use of attributes in R, object-oriented 
programming in the S3 system, and constructing R packages (in this order).

The  expected  audience  comprises  R  users  whose  own  code  largely  consists  of  self-written 
functions, as well as programmers who are fluent in other languages and have some experience with 
R. Interactive users of R without programming experience elsewhere are unlikely to benefit from 
this  course  because  quite  a  few  programming  skills  cannot  be  covered  here  but  have  to  be 
presupposed. We also need to limit the number of participants because most topics will be covered 
by discussing questions and exercises. Some exclusiveness is thus needed here. The participants, 
however, are invited to further distribute the results of the course (if any) via the “R club”.

The appendix of this course manual contains the first version of a DSMZ R style guide. The code 
examples in this document also serve as examples for the application of this style guide.

Conventions used in this document

In the following, “knowledge questions” are questions that you should attempt to answer without 
empirically assessing them by typing code in the R interpreter. In contrast, the “exercises” request 
you to write and try R code. The exercises are usually sorted increasingly in terms of their difficulty. 
Important keywords are written in  italics.  Code within this document is typed in  monospace and 
formatted according to the DSMZ R style guide in the appendix. Package names are written in bold 
face. Curses and offences have been blackened.

Further requirements

In addition to this document, you will need:

• Access to a computer with a running R version.

• An editor for R code, preferably one with appropriate syntax highlighting.

• The package roxygen2 from CRAN installed into this R version.
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• The package pkgutils (eventually available at CRAN) installed and the contained “docu.R” 
script made executable and linked from a $PATH directory (or placed wherever you will 
find it again). Using it (not from R, but from the command line) should be straightforward 
on Unix-derived systems, but Windows users might additionally need Rtools (http://cran.r-
project.org/bin/windows/Rtools).

• The  package  yarp (received  from the  course  instructor)  not installed  but  available  for 
unpacking and studying.

• Optionally also the package opm from CRAN not installed but available for unpacking and 
studying.

R as programming language

The purpose of this section is to clarify aspects of R programming by revisiting some terms from 
programming theory (the object-oriented programming paradigm will be treated below).

Procedural programming emphasizes modularity. Programs should be composed of subprograms or 
modules acting as independently as possible. This efficiently increases readability, testability, and 
reliability, as well as the chances for code reuse. Sensible scoping rules make writing modular code 
easier.

Functional  programming (as  opposed  to  imperative  programming)  is  a  paradigm  that  treats 
functions  like  mathematical  functions  by  avoiding  any  side  effects.  Programs  should  thus  be 
referentially transparent, i.e. independent of their state at a certain time point. As a consequence, in 
pure functional programming languages variables can be assigned only once, loops are replaced by 
recursion, and side effects are typically restricted to IO operations. Further, functions should also be 
treated as “first-class citizens”; that is, functions should be able to modify and return functions and 
get functions passed as arguments.

Type systems are relevant for programming because the affect both the ease with which programs 
can be written as well as how stringently the program is checked directly during interpretation or 
compilation. In contrast to  statically typed languages,  dynamically typed ones allow variables and 
function arguments to be assigned not only several times but also with contents of distinct types. 
(Remember that in this context, “type” refers to classes, explicitly set types or basic types such as 
floats, integers, character strings etc.)  Strong typing implies that operations involving variables of 
the wrong types result in an error, whereas weak typing characterizes programming languages that 
attempt to conduct implicit coercions (type casts) in such cases.

Array programming is a feature that allows the programmer to apply operations to entire array-like 
collections of values at once. An advantage is that explicit looping can be avoided, yielding terser 
code. Particularly R heavily relies on array programming. (The fact that, unfortunately, arrays are 
called “vectors” in R and multi-dimensional matrices are called “arrays”, does not matter here. By 
the way, R “lists” are not lists either.) To fully exploit R's specific capabilities, users must fully 
understand its approach to array programming. As an interpreted language, using “vectorization” in 
R usually also leads to speed gains because the relevant looping is then done in the interpreter's  
underlying  compiled  code.  Vectorization  is  also  highly  relevant  for  R's  powerful  indexing  and 
subsetting capabilities. A downside of vectorization is that it makes flow control more complicated 
than in other scripting languages. Actually, all operations for which scalars are required might need 
more checking in R than in language in which the fact that an object is a scalar can be inferred from 
its class (which one cannot do in R because of its vectorization approach).
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Some aspects of the way R is implemented should also be recalled. R is an interpreted, garbage-
collected scripting  language which recently  included support  for  byte-code compilation.  The R 
interpreter is a free-software re-implementation of the S programming language and written in C 
(using  some libraries  written  in  Fortran).  It  internally  works  as  an  interpreter  for  the  Scheme 
programming language (which is a dialect of Lisp). As such, R is largely  homoiconic. On top of 
that, R relies on a user-visible Algol-like syntax which in its use of parentheses, brackets and curly 
braces much resembles C but contains some significant deviations (some of which are rather ill-
chosen in my view). As belonging to the Algol family of languages, R contains a number of well-
known reserved words.

Knowledge questions

1. How does R enable procedural programming (with respect to subprograms, modules and 
scoping)?

2. Which features of R are borrowed from functional programming?

3. Demonstrate that R is not a pure functional-programming language.

4. Demonstrate that R is dynamically typed.

5. Demonstrate that R is strongly typed (in many aspects).

6. Provide at least two counterexamples in which R behaves like a weakly typed language.

7. Demonstrate that R is an array-programming language. Can you fully explain R's “recycling 
rules”?

8. In which way does vectorization make flow control more difficult?

9. What is the outcome of the following commands (remember that letters and LETTERS are 
character vectors of length 26 that contain the characters of the alphabet in lower case and 
upper case, respectively, defined as constants in the base package)?

• letters == letters

• letters == letters[TRUE]

• letters == letters[FALSE]

• letters == LETTERS

• letters == c("a", NA)

• identical(letters, letters)

• identical(letters, LETTERS)

• length(letters) == length(LETTERS)

• identical(length(letters), length(LETTERS))

• length(letters) == 26

• identical(length(letters), 26)

• c("3", "2", "1") == 1:3
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10. Which of the following entries are reserved words in R? Which ones are not reserved words 
but nevertheless predefined in R? If so, what are they (e.g. constants, operators, functions 
etc.)? Which of the undefined ones could be used as names of variables?

R T TRUE MAYBE FALSE

else elif elsif ifelse if

unless useless goto comefrom repeat

exit break quit bye stop

while do undo switch case

def procedure function in out

and or xor which that

formals for fork formula fortknox

NaN NA NAJA NIL NULL

^ > < -> <-

=> >= .. ..3 ...

! ? . : :-)

R's basic types

Table 1 provided an overview of the basic types in R. All of them have a specific return value of the 
class() function but are so-called “implicit classes”. is.object() returns FALSE for values from 
these classes (more information on the distinction between implicit and explicit classes is given 
below).  In addition to  construction functions such as  character(),  logical() etc.,  all  listed 
classes have a coercion functions like as.character(), as.logical() etc.; even an as.null() 
function is present (with the obvious return value). Furthermore, all listed classes come with type-
checking functions such as  is.character(),  is.logical() etc.,  but keep in mind that these 
functions are not equivalent to whether on object belongs the respective class.

Table 1. List of implicit classes built into R, and their main features depicted as the relationships 
between class(), mode(), storage.mode() and typeof().

Return value when applying... Eponymous 
construction 
function 
present?

NA value

is.atomic is.vector class mode storage.mode typeof

TRUE FALSE "NULL" "NULL" "NULL" "NULL" no [none]

TRUE TRUE "raw" "raw" "raw" "raw" yes [none]
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TRUE TRUE "logical" "logical" "logical" "logical" yes NA

TRUE TRUE "integer" "numeric" "integer" "integer" yes NA_integer_

TRUE TRUE "numeric" "numeric" "double" "double" yes NA_real_

TRUE TRUE "complex" "complex" "complex" "complex" yes NA_complex_

TRUE TRUE "character" "character" "character" "character" yes NA_character_

FALSE TRUE "list" "list" "list" "list" yes [none]

TRUE FALSE "matrix" [varying] [varying] [varying] yes [varying]

TRUE FALSE "array" [varying] [varying] [varying] yes [varying]

FALSE FALSE "function" "function" "function" "closure" yes [none]

FALSE TRUE "expression" "expression" "expression" "expression" yes [none]

FALSE FALSE "call" "call" "language" "language" yes [none]

FALSE FALSE "name" "name" "symbol" "symbol" yes [none]

Knowledge questions

1. Assume you use c() to combine two distinct ones of the vector types list in Table 1. Which 
class will result from the coercion? Clarify this for all pairs by defining an order of coercion.

2. Provide two reasons why identifying an object as a vector-like one with a certain class does 
not guarantee that it contains any information.

3. Have a look at the anomalies in Table 1 for the vectors that hold numbers. Where might 
these anomalies come from?

4. Why are data frames missing from Table 1?

5. A function with an opposite behaviour of is.atomic() for almost all classes listed above is 
is.recursive(). Explain in which way the classes for which is.atomic() returns FALSE 
(except “call” and “name”, which you can safely ignore) are recursive data structures.

6. How can one convert a logical matrix into a numeric matrix?

Writing functions in R

We will here focus on R's powerful argument-processing capabilities and on the reflection tools that 
are  provided  for  R functions.  Other  aspects,  such as  algorithms,  are  not  specific  to  functions. 
Generic functions as used for object-orientation in R are treated below. R's processing of function 
arguments is powerful as it  was designed from the very beginning for using named arguments, 
arguments  with  defaults  and  arbitrary  numbers  of  arguments.  Moreover,  lazy-evaluation 
mechanisms enable a programmer to apply some interesting constructs. For instance, the following 
function:

divide <- function(x, y = mean(x)) { # example code #1
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  x / y

}

...uses  as  default  second  argument  an  expression  that  refers  to  the  first  argument.  This  works 
because mean(x) is not evaluated before x / y is computed, and never evaluated if the default y is 
overwritten. Similarly, it is possible in argument defaults to refer to variables that are not available 
in the environment but are set within the function body (the only action needed to make this useful 
is to describe the meaning of this variable in the documentation of the function).

Another topic is the definition of replacement functions, which will be explained in the chapter on 
R attributes.

Exercises

None of the functions in the these exercises needs to be directly useful for real programming tasks. 
Unless a certain return value is requested, try to write (or at least conceive) each functions as being 
independent  of  a  certain  return  value.  Several  solutions  might  exist,  but  the  more  elegant  the 
solution, the better. For simplicity, omit any user-friendly error handling.

1. Write a function that accepts no arguments.

2. Write a function that accepts an arbitrary number of arguments.

3. Write a function that accepts one or two arguments but neither less nor more. Then write a 
function that accepts zero or one arguments but neither less nor more. Do this with and 
without default arguments.

4. Write  a  function  that  accepts  a  single  argument  or  needs  two  ones,  but  never  more, 
depending on the value of the first argument.

5. Write a function that accepts an arbitrary number of arguments, but at least one, and returns 
the last one.

6. Write a function that accepts an arbitrary number of arguments, but at least one, and returns 
one of them, selected at random (this is just a refinement of #5).

7. Write a function that expects at least n arguments, where n is an arbitrary positive integer 
(but fixed for the function).

8. Write  a  function  that  expects  at  least  n  arguments,  where  n  is  a  positive  integer 
corresponding to the first argument.

9. Write a function that accepts an arbitrary number of arguments exactly one of which must be 
named. (An argument that “must be named” is one whose formal name must be given if the 
function is called.)

10. Write  a  function  that,  depending  on  the  value  of  the  2nd argument,  which  should  be  a 
character  scalar,  computes  either  the  minimum,  the  mean,  or  the  maximum of  its  first 
argument (assumed to be a numeric vector). Let the mean be the default.

11. Write  a  function that  takes  a function  fun as  single argument  and returns  its  arity  (the 
“arity” of a function is the number of arguments that can be passed to it). Return Inf if there 
is no limit regarding the number of arguments passed to fun.

12. Write  a  function  that  accepts  an  arbitrary  number  of  arguments  and  returns  its  call  as 
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character scalar.

13. Write a function that returns itself.

14. Implement a function that returns a second function, which in the first call returns 1 and in 
each subsequent call the next higher integer (basically a counter function). Then implement 
the same function in a more flexible way, allowing the user to explicitly set the start and the 
increment values (but keeping the default of 1 in either case).

15. Implement  a  function that  takes  another  function  fun as  argument,  reverts  the order  of 
arguments of fun and returns the accordingly modified function.

Error handling

Creating  and handling  conditions  that  indicate  unusual  situations  during  program executions  is 
essential for state-of-the-art programming, particularly in large projects. R offers mainly errors and 
warnings as predefined conditions (with stop() and warning() as the underlying functions), and 
a  try-catch mechanism, implemented using  tryCatch() for dealing with these conditions (and 
optionally also with user-defined ones) by passing specific handlers together with the expression to 
evaluate to this function. These handlers can simply be given as named function arguments, with the 
name indicating the condition for which the handler is  provided.  stopifnot() and  try() are 
simpler but less customizable alternatives. The following example function attempts to convert an 
object x to a a numeric vector but returns x unchanged if a warning or even an error occurs:

try_numeric <- function(x, ...) { # example code #2

  tryCatch(expr = as.numeric(x), warning = function(w) x,

    error = function(e) x, ...)

}

Here ... is used to optionally pass additional handlers. Because “warning” and “error” are classes 
that  inherit  from  the  abstract  class  “condition”,  one  could  also  state  condition  = 
function(cond) x, but this might conflict with other handlers to be passed. Note that a “finally” 
argument can be given to  tryCatch() with code guaranteed to always be executed as its  last 
operation.  Similarly,  on.exit() can  be  used  within  a  function  to  guarantee  code  execution 
irrespective of whether or not an error occurs during the function call. (A typical example is the 
guaranteed resetting of global options that had to be modified by the function.)

Exercises

1. Write a function unpercent() that expects a numeric vector x as argument and divides it 
by 100. The function should raise an error with a meaningful message if  x is not numeric 
and issue a warning with a meaningful message if any of the values in  x are below 0 or 
above 100. Implement one version using stop() and one using stopifnot(). Which one 
would you prefer in a real project?

2. Write a function must() that takes an arbitrary expression as first argument and returns the 
results of this expression if neither errors nor warnings occur. If warnings occur, the function 
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should convert them to errors with the same message text. (This is actually the behaviour of 
a function from the pkgutils package used, e.g., by opm.)

3. Write a function taste() that takes an arbitrary expression as first argument and returns the 
results of this expression if no errors occur. If an error occurs, the function should return the 
error's message text as character scalar.

4. Write a function relaxed() that takes an arbitrary expression as first argument and returns 
the results of this expression if no errors occur. If a warning occurs, the function should turn 
the warning into a message using the warning's message text, and then return the result of 
evaluating  the  expression.  (Hint:  have  a  look  at  how  suppressWarnings() is 
implemented.)

Attributes

In contrast to most other languages, R allows an arbitrary set of “attributes” to be added to arbitrary  
objects.  The  only  real  exception  is  NULL,  which  cannot  have  attributes;  also  note  that  the 
modification of certain attributes of certain objects can have destructive effects. Attributes add a lot 
of flexibility to the language, and it is no wonder that both object-oriented approaches in R, S3 and 
S4, have been implemented using attributes. Attributes are set and received individually using the 
attr()<- and  attr() functions,  respectively,  and  set  and  received  at  once  using 
attributes()<- and attributes(), respectively. (There is also mostattributes()<-, which 
ensures the correct dimensions of objects that rely on them, such as matrices.) A lot of important 
functionality,  such  as  names  of  vectors,  row and  column names  of  matrices  and  data  frames, 
dimensions  of  matrices  and  arrays,  and  class  names  of  objects  with  explicitly  set  classes,  are 
implemented using attributes.  For instance,  the code  x <- 1:5; names(x)  <- letters[x] 
guarantees that we can access the vector elements with character keys, too, using e.g.  x[“ a” ], 
because these keys are stored as “names” attribute.

Thus, frequently used attributes deserve their own getter and setter functions. Getter functions are 
just wrappers for  attr(), whereas setter functions need the special semantics of R replacement 
functions. For instance, to set an attribute “author”, the following convenience function could be 
defined:

`author<-` <- function(x, value) { # example code #3

  attr(x, "author") <- value

  x

}
Keep  in  mind  that  the  replacement  argument  must be  called  “value”,  and  that  a  replacement 
function must return the modified object.

Knowledge questions

1. Why has the name of the setter function shown above to be enclosed in backticks?

2. If you enter y <- author(x) <- "George W. Bush", what is the value of y?

3. How can one delete (i) a single, selected attribute; (ii) all attributes at once?
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Exercises

For some of the following exercises, the matrix object m is used, constructed as follows:

m <- matrix(1:10, ncol = 2) # example code #4

rownames(m) <- letters[1:5]

colnames(m) <- LETTERS[1:2]

1. Write a getter and a setter function for an attribute called “feature” (with arbitrary content).

2. Which attributes does m have, and what are they good for? Why is there no “class” attribute?

3. Convert  m to a data-frame object m2d by entering m2d <- as.data.frame(m). Study its 
attributes. Which are novel and what do they mean? Which other ones have changed or kept 
their meaning?

4. Can you convert m to a vector by removing something? If so, which attributes remained?

5. Reimplement code example #3 using structure().

6. Metaprogramming: Write a function set_getter_and_setter() that takes the name of an 
attribute as first argument and creates getter and setter functions for it (like the ones you 
have defined in exercise #1) in the environment in which it is called.

Object-oriented programming with S3

Unfortunately, neither S nor R were designed to support object-oriented programming from the very 
beginning. As in many other languages which have later on been upgraded to this paradigm, a lot of 
aspects  of  object  orientation  are  not  as  straightforward  as  they  could  be.  I  have  compiled  the 
following (probably incomplete) list of problems:

• Large parts of base R are written in a purely procedural style. This makes it less easy to 
predict (and learn) the behaviour of many important R utilities (particularly whether they 
use a formally defined method dispatch or do this internally). Likewise, classes are divided 
in implicit ones (treated in the chapter “R's basic types”) and explicit ones (all others), often 
making more checks necessary than in a more uniformly designed system.

• There are two competing implementations of object-orientation in R, S3 and S4. Again this 
results in the need for more checking, and also for more conversion functionality.

• Classes in S3 are informal; class names are not guaranteed to be associated with certain data 
types or combinations thereof. This might also result in the need for more checking. 

• S4 is more formal and more elaborate but also results in more code overhead. Furthermore, 
the automated generation of documentation using Roxygen-like tools does not support S4.

• Object-oriented programming in R is function-centered, not class-centered. This is unusual 
for  programmers  experienced  in  other  object-oriented  programming  languages.  It  is 
annoying particularly in S4 which requires the formal definition of both generic functions 
and classes. Moreover,  this  implementation via generic functions forces methods for the 
same generic  function to  contain the same formal  arguments,  at  least  those used in  the 
definition of the generic function.
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• In S3, dots in function names get a syntactical meaning. It is thus not directly possible to  
predict from a function name whether or not it is a method for a generic function.

• S3 heavily relies on ... for passing arguments between methods because it is necessary for 
allowing methods to add own arguments which are not  defined in the generic  function. 
Function arguments with misspelled names will thus silently be ignored.

• S3 does not allow for formally defined multiple inheritance, virtual classes, mixins etc.

Having said this, I hasten to add that S3 actually turns out to be rather easy to use in practice. As 
long as the programmer keeps in mind that S3 classes are based on trust, and destructive actions are 
avoided, particularly the removal of parts of an object that are needed to ensure the appropriate 
behaviour of members of its class, serious problems are unlikely to occur. S3 implies little code 
overhead besides the usual one-liners for defining a generic function, and if one can cope with 
predefined objects such as those listed in Table 1 as the underlying objects (e.g., lists holding the 
needed  components)  to  which  just  some  special  behaviour  has  to  be  added,  S3  might  be  the 
preferable solution. In contrast, S4 is the better choice if

• more and stricter checking must be done during object construction;

• more overall (and particularly better defined) inheritance shall be used;

• objects are too complex to be easily modelled as lists or other basic objects;

• information has to be hidden more carefully;

• dispatch on multiple formal or on “missing” arguments is of interest;

• the problems related to the ... argument shall be avoided.

But of course choice also depends on whether or not you have to operate in a predefined S3 or S4 
coding environment. S4 is not further covered in this course (but see, e.g., opm for an example).

Implementing a generic “Hello world” function and its methods

The challenging thing about “hello world” (whose treatment was suggested by one of the course 
members, by the way) is that it is hard to make any sense of object-orientation in conjunction with 
it, but we will do our very best. First, let us define an S3 generic function:

hello_world <- function(x) { # example code #5

  UseMethod("hello_world")

}

This is all  we need for getting started –  UseMethod() will  do the method dispatch for us and 
automatically pass its own arguments to the selected method. (For later on, note that because we do 
not define a ... argument in the generic we cannot add further arguments to any of its methods.) 
The next step would be to define such methods, e.g. for the class “character”:

hello_world.character <- function(x) { # example code #6

  print(sprintf("Hello world, my name is '%s'!", x))

}
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(Note the use of the C-style  sprintf(), which often yields more compact code than  paste().) 
We  can  now  enter,  e.g.,  hello_world(x  =  “ Fred  Firestone” );  then, 
UseMethod("hello_world") will  search for  a  method whose name starts  with  “hello_world” 
followed by a dot and the name of the class, or one of the classes, of object x – “character” in our 
case. But, e.g., hello_world(x = 5) would fail because we have not yet defined a method for the 
class “numeric”. A default method for hello_world() can be defined as follows:

hello_world.default <- function(x) { # example code #7

  print("Hello world!")

}

If UseMethod() cannot find a method for the class (or any of the classes) of the object passed to it, 
it searches for a method named “hello_world.default” and calls it. Only if such a default method is 
not found, an error results. One should now be able to enter hello_world(5) without receiving an 
error message.

It is now your task to define hello_world() methods for other predefined classes.

Exercises

1. Implement the hello_world() method for the “numeric” class as follows: Raise an error if 
the numeric vector  x passed to it has zero length or contains negative numbers; otherwise 
print the friendly message x times.

2. Implement  the  hello_world() method  for  data  frames  as  follows:  Print  the  message 
“Hello world, I am a data frame with i rows and j columns!” but with “i” and “j” replaced by 
the correct numbers.

3. Implement the hello_world() method for factors by treating them like character vectors. 
(Hint: Do not repeat yourself!)

Implementing a “Hello world” class

Instead of defining a  hello_world() generic function, we will now look at “Hello World” from 
the class perspective. We define only a single method for our class “hello.world”, namely for the 
prominent function print(), which is already generic:

print.hello.world <- function(x, ...) { # example code #8

  print("Hello World!") 

}

Note that  we must use  x and  ... as  formal  argument because these are the ones used by the 
print() generic. Now we only have to keep in mind that explicit classes are attributes, returned 
using oldClass() (the more frequently used class() returns implicit classes, too), and set using 
class()<-.  S3  does  not  require  specific  constructor  functions  (that  is  why  it  is  called  an 
“informal” approach) – objects get members of a class if the name of the class is added to the  

11



DSMZ R programming course

attribute named “class”. This knowledge allows us to write two helper functions for inserting a 
“hello.world” entry in the vector of classes of an object and returning a novel object:

insert_class <- function(x, klass) { # example code #9

  if (isS4(x))

    stop("this function is not intended for S4 objects")

  if (!identical(klass, make.names(klass))

    stop(“ 'klass' contains invalid names” )

  class(x) <- c(klass, oldClass(x))

  x 

}

make_hello_world <- function(x) { # example code #10

  insert_class(x, "hello.world")

}

The second check in  insert_class() is not absolutely necessary but avoids the generation of 
strange-looking class names.

The  following  exercises  will  first  look  at  class-constructor  functions  that  come  with  R,  then 
examine whether our hello-world efforts will make our objects more friendly, and then switch to 
examining some generic functions and methods from the yarp package.

Exercises

1. Have a look at  the last  lines of the function bodies of  data.frame (),  factor() and 
table() from base and glm() from stats. What do they have in common? Why?

2. Apply make_hello_world() to some R objects. How is their behaviour changed?

3. What happens if you replace oldClass(x) by class(x) in insert_class()?

4. What  could  happen  if  you  replace  c(klass,  oldClass(x)) by  c(oldClass(x), 
klass) in insert_class()? Try this for a character vector and a data frame.

5. Implement  delete_class(), which removes  klass from  x, and accordingly implement 
unmake_hello_world().

6. Compare  your  delete_class() function  to  unclass().  Apply  unclass() to  a  data 
frame. What do you get?

7. Rewrite the “arity” function (exercise #11 of “Writing functions in R”) as a generic function 
with a method for the class “function”, and rewrite the unpercent() function (exercise #1 
of “Error handling”) as a method for the class numeric. Can you now simplify the body of 
this function?

8. Unzip the package yarp. Within its file “asqr.R” in the “R” subdirectory a generic function 
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asqr() has been defined. Determine for which classes methods of it have been defined and 
why precisely for these classes and in this way. Explain the use of the ... operator in this 
context.

9. Examine in the same way box_cox_fun() and box_cox() in the file “box_cox.R”.

10. As an aside, call box_cox_fun() with a single y value. Where does the resulting function 
store this value? What does this have to do with exercise #14 of the “Writing functions in R” 
section?

S3 group generics

Group generics are probably the only slightly more complex, but also more powerful aspect of S3. 
Basically they allow one to define several methods at once by defining a virtual group method 
(which  cannot  be  called  directly).  One  of  the  group  generics  is  Summary,  which  includes  the 
functions  all(),  any(),  sum(),  prod(),  min(),  max()  and  range().  The  following  is  a 
straightforward implementation for our “Hello World” class:

Summary.hello.world <- function(x, ...) { # example code #11

  message(sprintf("Hello world, let's compute '%s'!", .Generic))

  NextMethod()

}

Beyond the fact  that we can define group generics,  this  mainly demonstrates two issues.  First, 
UseMethod() creates an environment for the method it selects with a number of special variables 
such as  .Generic, which is a character scalar holding the name of the generic function that has 
been called. Second, NextMethod() is used to pass control to the eponymous function of the parent 
class (which is just the next entry in the “class” attribute, or an underlying implicit class). Like 
UseMethod() it automatically receives the arguments of the function that calls it.

Do not confuse the Summary group generic with the generic function summary().

Exercises

1. Create a numeric vector and calculate its minimum and maximum. Then set its class to 
“hello_world” using class()<-, calculate the minimum and maximum again and watch the 
difference.

2. Create a corresponding “hello_world” method for the Ops group generics and test it.

Creating R packages

You should have received a copy of yarp (“Yet Another R Package”) and an independent copy of its 
PDF manual. Please do not install it into R but unpack it for studying its files and subdirectories. 
The structure of the package should be like this:

yarp/
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yarp/DESCRIPTION

yarp/NAMESPACE

yarp/R/

yarp/R/asqr.R

yarp/R/box_cox.R

yarp/R/helpers.R

yarp/man/

yarp/man/asqr.Rd

yarp/man/box_cox.Rd

yarp/man/box_cox_fun.Rd

yarp/man/is_TF.Rd

yarp/man/simplify_conditionally.Rd

Apparently there are two files at the top level, “DESCRIPTION” and “NAMESPACE”, in addition 
to  two  subdirectories  “R”  and  “man”  containing  only  *.R  and  *.Rd  files,  respectively.  The 
“DESCRIPTION” file is the major organizer for the package, formatted like a Debian Control File 
(DCF).  The  “NAMESPACE” file  controls  which  functions,  generic  functions  and  methods  are 
exported  from  the  package  (those  not  listed  therein  are  kept  internal).  It  uses  a  syntax  that 
superficially looks like R code but is parsed in a much simpler way. The “R” subdirectory contains 
all  R  code;  hence  all  files  therein  should  use  “.R”  as  file  extension.  The  “man”  subdirectory 
contains the documentation in Rd format (which is a specialized subset of LaTeX); hence all file 
names  end  in  “.Rd”.  All  package  documentation  (PDF,  HTML,  and  R-internal  man  pages)  is 
inferred from such files.

Documenting R packages

The good news about R documentation is that once Rd files are available, they can be automatically 
converted to nicely formatted, interlinked PDF and HTML files. Moreover, example code can be 
placed in Rd files, which is automatically checked when running  R CMD check on the package. 
Finally, Rd contains a large number of instructions not only for formatting but also for including 
specific information such as literature references.

The bad news is that Rd files have to be kept separate from the R files they document. This is 
particularly  annoying  for  programmers,  who  want  to  have  the  documentation  as  close  to  the 
respective code as possible to minimize the risk of getting both out of sync. Fortunately, tools such 
as the roxygen2 package allow Rd documentation to be automatically generated from specialized 
comments in R code files. roxygen2 uses tags such as @param, which are converted to according 
Rd instructions (\arguments{} and \item{} in that case). A package just has to be “roxygenized” 
before running R CMD check, which, as a by-product, generates a PDF manual. “Roxygenizing” 
can be conducted non-interactively by running an Rscript-based script on the operation systems's 
command line.
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Exercises

1. Clarify what the entries in DESCRIPTION are good for. Compare this file's content with the 
first page of the PDF manual.

2. Which instructions are contained in NAMESPACE and what do they mean?

3. Compare the documentation of the asqr() function in the PDF manual with the content of 
the file “asqr.Rd” and clarify which instruction within this Rd file induces which part of the 
PDF documentation.

4. Compare the content  of the file “asqr.Rd” with the Roxygen-style  documentation of the 
asqr() function within the file “asqr.R” and clarify which instruction within this R file 
induces which part of the Rd file documentation. (Hint: regarding @family, have a look at 
the links within the PDF documentation of asqr().)

5. Compare the instructions in NAMESPACE for the asqr() function and its methods with its 
Roxygen-style documentation within the file “asqr.R” and clarify which Roxygen tag causes 
which NAMESPACE entry to be written.

6. Have a look at the functions within the file “helpers.R”. Apparently they do not occur in 
NAMESPACE. What  does this  imply regarding their  user-visibility  once the package is 
loaded? Which Roxygen entry causes these functions to be omitted from NAMESPACE?

7. Delete the “yarp/man” subdirectory. Then use the “docu.R” of pkgutils script to generate the 
documentation of  yarp again. Study the source code of “docu.R” for how scripting using 
Rscript works.

8. Also on the command-line, run R CMD check with the yarp package. This should generate 
a  directory  “yarp.Rcheck”.  Study  its  content,  particularly  “00check.log”  and  “yarp-
Ex.Rout”.

9. Unpack the  opm package.  Have a  look at  its  top-level  files.  What  are  all  the files and 
subdirectories of opm good for that are lacking from yarp?

References

In  the  author's  view,  the  strength  of  the  following  list  lies  in  what  it  does  not contain.  Most 
introductions  into  R  focus  on  how  to  do  this  and  that  statistical  stuff  with  it.  As  a  logical 
consequence,  they  will  distract  a  programmer  from  the  necessary  facts.  For  obvious  reasons, 
introductions into R are likely to fall for this “statistics trap”, with the consequence that many long-
time interactive users of R (even if they are experienced programmers in other languages) have 
actually not much clue about what “programming in R” could mean. The following list is thus short, 
and there may be many other valuable resources out there, but the author's experience only allows 
these ones to be wholeheartedly recommended:

• S3  programming:  R.  Gentleman,  R  Programming  for  Bioinformatics.  Chapman  & Hall 
2009, chapter 3.

• Creating packages:  http://cran.r-project.org/doc/manuals/R-exts.pdf (useful hints regarding 
S3 programming are in chapter 7)

• R for programmers: http://  heather.cs.ucdavis.edu/~  matloff  /R/RProg.pdf  
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Appendix 1: Comments on a selection of useful functions

This section is mainly intended as a list of names of useful functions. We will not provide much 
details about heir functioning but mainly comment on whether or not they are generic.

Environment

See Sys.getenv(), Sys.setenv() and the help for the topic “environment variables” for use and 
modification of such variables. Regarding file handling, see the topic “files” as well as  getwd() 
setwd(), list.files(), file.exists() and finally file_test() from the utils package.

IO

See  read.table() and its companions. Your own input functions can be based on  scan() and 
readLines(). For output write.table() is available as well as the lesser specialized write() 
and cat(). For within sessions consider  sink() and capture.output(). R objects themselves 
can be output/input with save()/load() and dump()/source() using binary or textual format (R 
code), respectively. None of this is written in an object-oriented style.

Common vector operations

For generating vectors, in addition to the constructor functions listed in Table 1, c() is frequently 
used. It is generic, but only for S4 methods. For sorting, there are  sort.int() (for all kinds of 
vectors)  and  its  object-oriented  companion  sort().  rank() is  also  available  but  not  generic. 
order() and sort.list() (which is not a sorting function for lists!) are useful if an object should 
be  sorted  according  to  the  sorting  order  of  one  to  several  other  objects.  unique(),  rev(), 
duplicated() and  anyDuplicated() are generic functions (and thus not restricted to vectors). 
For  generating  regular  sequences,  there  are  the  internally  generic  seq.int() and  its  “normal” 
object-oriented  companion  seq().  rep() is  also  internally  generic  and  thus  has  restrictions 
regarding the definitions of new methods. Method definition for such functions is via S4 and cannot 
be  done  for  the  implicit  classes,  which  would  appear  as  “sealed”.  See  the  help  for  the  topic 
“InternalMethods” for further details. The common names() and `names<-`() functions work in 
the same way. A “normal” generic function with, thus, fewer restrictions is labels(). tapply() is 
not  generic.  Finally,  note  that  seq_along() and  seq_len() are  often  useful  in  loops  and 
preferable to constructions using length() and the `:` operator.

Sets

A simple approach, treating vectors as sets, is available, with the predefined functions  union(), 
intersect(),  setdiff() and  setequal(). These are all weakly typed in the sense that all of 
them first call as.vector().
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Logical vectors

For the Summary group generic, see above. Remaining information is available in the help for the 
topic  “Logic”.  You  will  also  frequently  need  which(),  but  note  that  which.min() and 
which.max() are available for use with numeric vectors.

Character vectors

Predefined functions for processing character vectors are not written in an object-oriented style, and 
most of them are weakly typed in the sense that they start with converting the passed objects using 
as.character().  paste() and  sprintf() are  useful  for creating character  vectors.  grep(), 
grepl(),  regexpr(),  gregexpr() and regexec() can be used to match character vectors with 
regular  expressions,  and  agrep() can  do  this  error-tolerantly.  match(),  charmatch() and 
pmatch() match using full or partial fixed strings, but note that the infix operator  %in% is often 
more useful in conditions. Among those functions, match() and %in% do not convert to character 
mode unless necessary and are thus general vector operators. nchar() and nzchar() are used to 
get string lengths or test for non-zero lengths, respectively. For modifying character vectors, sub(), 
gsub(), substr(), `substr<-`(), strsplit(), toupper() and tolower() are available, with 
the expected meaning.

Matrices and data frames

dim(),  dimnames() and  their  replacement  functions  are  internally  generic  and  thus  have 
restrictions regarding the writing of new methods (see above). The same holds for the bracket and 
dollar-sign operators, but subset() is a “normal” generic function. nrow() and ncol() just rely 
on  dim(), but there are also  NROW() and  NCOL(), which can sensibly be applied to vectors, too. 
t() is generic and, e.g., also available for data frames. rownames() and colnames() as well as 
row() and col() are not generic but can be applied to any matrix-like (two-dimensional) object. 
rbind() and  cbind() are also generic but not via  UseMethod(). Their behaviour is thus also 
special.  rowSums(),  colSums(),  rowMeans() and  colMeans() are  all  weakly  typed  as  they 
attempt to convert  the passed objects  using  as.matrix().  For use in programming, these four 
functions have faster but less safe companions whose names start with a dot. As the next step, one 
frequently  applies  sweep() (which  is  not  generic).  rowsum() as  well  as  the  more  general 
aggregate() and  by() are generic.  with(), which is a safer alternative to  attach(),  is also 
generic.

Functional programming

For higher-order function-programming methods,  see  Reduce() and its  companions  Filter(), 
Find(),  Map() and  Position(). Regarding the apply-family of functions, note particularly that 
for programming vapply() is usually safer than sapply() because, e.g., the latter might return the 
wrong type if the input list is empty.
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Appendix 2: R Programming Style Guide

The goal of the R Programming Style Guide is to make our R code easier to read, share, and verify.  
(Assuming that no one within DMSZ has produced one before, I have tentatively called it DSMZ R 
Style Guide Version 1.) The rules below were compiled by me after consulting Google's R style 
guide  (http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html)  and  the  CRAN 
manuals on writing R extensions (http://cran.r-project.org/doc/manuals/R-exts.html) and Rd files 
(http://developer.r-project.org/Rds.html).  They  had  to  be  modified,  however,  e.g.,  for  resolving 
conflicts.  Google's  R style guide did neither  seem to consider nor seem to be compatible with 
writing R packages, and thus the entire “General Layout and Ordering” section had to be deleted.

Notation and Naming

File Names. File names should end in “.R” and, of course, be meaningful. 

# GOOD:

predict_ad_revenue.R

# BAD:

foo.R

I personally use a scheme in which all non-internal functions of a package are placed that has the 
same name than the family to which the function is assigned using roxygen2's  @family tag. For 
instance,  the  file  “plotting.R”  would  contain  functions  with  the  entry  @family plotting-
functions.

Identifiers.  Identifiers should be named according to the following conventions. Variable names 
should have all lower case letters and words separated with dots (.); function names should have all 
lower  case letters  and words  separated  with underscores  (_);  dots  are  only used in  S3 generic 
function  definitions;  constants  are  in  all  upper  case  words  separated  with  underscores  (_). 
Regarding function and constant names, this deliberately deviates from Google's R style guide. Its 
suggestion to use camel case in function names does not seem idiomatic in most R packages; also, 
underscores are more readable than camel case. I have observed them in many recent R packages.

# GOOD:

variable.name, avg.clicks

# BAD:

avg_Clicks, avgClicks

# GOOD:

function_name, calculate_avg_clicks

# BAD:

CalculateAvgClicks, calculateAvgClicks

# GOOD:
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CONSTANT_NAME

Function names should be made verbs. An exceptions are constructor functions for classed objects, 
in which case the function name (constructor) and the class should match (e.g.,  opms() from the 
opm package).

Syntax

Line length. The maximum line length is 80 characters. (The Rd style guide at http://developer.r-
project.org/Rds.html even recommends at most 65 characters for example R code.)

Indentation.  When indenting your code, use two spaces. Experience with other languages shows 
that two are entirely sufficient. Never use tabs or mix tabs and spaces. Continuation lines are also 
indented with two spaces only, use four only if the line ends with '{' because in that case the next 
line has to be indented with two spaces. This deliberately deviates from Google's R style guide for 
avoiding  unnecessary  work  just  for  beautifying  the  code.  (The  current  indentation  default  of 
Rstudio,  http://www.rstudio.org/, is also suboptimal because it wastes much space and does not 
result in files with a consistent layout anyway.)

Spacing.  Place  spaces  around  all  binary  operators  (=,  +,  -,  <-,  etc.).  This  greatly  increases 
readability. Do not place a space before a comma, but always place one after a comma (just as you 
would when writing a sentence in a natural language!).

# GOOD:

tab.prior <- table(df[df$days.from.opt < 0, "campaignid"])

total <- sum(x[, 1L])

total <- sum(x[1L, ])

# BAD:

# Needs spaces around '<'

tab.prior <- table(df[df$days.from.opt<0, "campaignid"])

# Needs a space after the comma

tab.prior <- table(df[df$days.from.opt < 0,"campaignid"])

# Needs a space before <-

tab.prior<- table(df[df$days.from.opt < 0, "campaignid"])

# Needs spaces around <-

tab.prior<-table(df[df$days.from.opt < 0, "campaignid"])

# Needs a space after the comma

total <- sum(x[,1L])

# Needs a space after the comma, not before

total <- sum(x[ ,1L])
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Place a space before a left  parenthesis,  except in a function call.  This help to distinguish flow 
control from function calls.

# GOOD: 

if (debug)

# BAD: 

if(debug)

Do not place spaces around code in parentheses or square brackets. As an exception, always place a 
space after a comma (the reason was given above).

# GOOD:

if (debug)

x[1L, ]

# BAD:

if ( debug ) # No spaces around debug

x[1L,] # Needs a space after the comma 

Curly braces. An opening curly brace should never go on its own line; a closing curly brace should 
always go on its own line. You may omit curly braces when a block consists of a single statement;  
however, you must consistently either use or not use curly braces for single-statement blocks. 

if (is.null(ylim)) {

  ylim <- c(0, 0.06)

}

# xor (but not both) 

if (is.null(ylim))

  ylim <- c(0, 0.06)

Always begin the body of a block on a new line. 

# BAD: 

if (is.null(ylim)) ylim <- c(0, 0.06) 

if (is.null(ylim)) {ylim <- c(0, 0.06)} 

Assignment. Use <-, not =, for assignment. One reason is that = has a distinct meaning when using 
it for assigning named function arguments, and thus being consequent here avoids confusion.

# GOOD:

x <- 5

# BAD:

x = 5
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Semicolons. Do neither terminate your lines with semicolons nor use semicolons to put more than 
one command on the same line.

Organization

Commenting  Guidelines.  Comment  your  code  in  English.  Avoid  special  characters  such  as 
German umlauts. Entire commented lines should begin with '#' and one space. Short comments can 
be placed after code preceded by one space, '#', and then one space. roxygen2 comment lines have 
to start with '#', a single quote, and one space.

# Create histogram of frequency of campaigns by percent budget spent.

hist(df$pct.spent,

  breaks = "scott",  # method for choosing number of buckets

  main = "Histogram: fraction budget spent by campaignid",

  xlab = "Fraction of budget spent",

  ylab = "Frequency (count of campaignids)")

Function definitions and calls.  Function definitions should first  list  arguments without default 
values,  followed  by  those  with  default  values.  In  both  function  definitions  and function  calls, 
multiple arguments per line are allowed; line breaks are only allowed between assignments. 

# GOOD: 

predict_ctr <- function(query, property, num.days,

    show.plot = TRUE) {

# BAD: 

predict_ctr <- function(query, property, num.days, show.plot =

    TRUE) {

Note that we here indent with four spaces because this is a special kind of continuation line (see 
above).

Ideally,  unit  tests  should serve as sample function calls  (for shared library routines). If  code is 
organized in packages, examples in the manual should (also) serve this purpose.

Function Documentation. Functions are either part of a package or part of a file that can be read 
using  source().  For  writing packages,  we recommend documentation in  roxygen2-style,  even 
though  roxygen2's  support  for  S4  methods  is  poor  (see  pkgutils for  remedies).  For  sourced 
functions, you might use Google's R style guidelines.

TODO Style. Use a consistent style for TODOs throughout your code.
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