
DSMZ R programming course – Solutions

R from a programmer's perspective
Solutions to the exercises within an R course held by M. Göker at the DSMZ, 11/05/2012 & 25/05/2012.

Slightly improved version, 10/09/2012.

This document is distributed under the CC BY 3.0 license. See http://creativecommons.org/licenses/by/3.0 for details.

R as programming language
1. Function serve as subprograms, packages as modules. R has lexical scope.

2. Functions can be created by functions and can be passed to functions. Data structures and
functions can be converted to each other.

3. There is no referential transparency.

4. E.g. x <- 5; x <- “ abc” would be sufficient to show that.

5. E.g. that 5 + “ 5” results in an error would be sufficient to show that.

6. Important examples are the automated coercion when c() is applied to vector types other
than lists and when == is used; also, numeric values can be used in if, else and while
statements.

7. E.g. that 1:5 + 1 is possible and results in a vector of length 5 would be sufficient to
demonstrate vectorization. Keep in mind that the order of the two vectors does not matter.
The easy cases are if the length of one vector is an integer multiple of the length of the other
one, with the two frequent trivial cases of length-one vectors and equal-length vectors. Make
sure you understand the behaviour in the case of zero-length vectors.

8. Logical or numeric vectors to be used in if, else and while statements need not have
length 1, even though this would be the only sensible value.

9. These exercises show that == and identical() differ regarding vectorization and whether
they do automated coercion. The solutions are, in order:

• rep.int(TRUE, 26L)

• rep.int(TRUE, 26L)

• logical()

• rep.int(FALSE, 26L)

• c(TRUE, NA, rep.int(c(FALSE, NA), 12L))

• TRUE

• FALSE

• TRUE

• TRUE

• TRUE

1

http://creativecommons.org/licenses/by/3.0

DSMZ R programming course – Solutions

• FALSE

• c(FALSE, TRUE, FALSE)

10. Enter ?Reserved and ?Syntax at the R prompt and study this part of the documentation.

R's basic types
1. raw > character > complex > numeric > integer > logical

2. It can have zero length, and it can contain NA values.

3. R tries to hide the difference between integers and doubles from the user. Also, because
these are implicit classes, method dispatch is C-internal. Implicitly, numeric values have the
class c('double', 'numeric'); integer values have the class c('integer',
'numeric').

4. Data frames have an explicit class, set via the according attribute.

5. Lists can contain lists, functions can contain functions (in contrast to, say, C).

6. m <- matrix(c(T, F, T, F), ncol = 2); mode(m) <- “ numeric”

Writing functions in R

1. Function with no arguments

This is the simplest solution, because we did not request a certain function body.

fun_1 <- function() {}

2. Function with arbitrary number of arguments

The first, simple solution introduces the important ... reserved word; again the function body is
arbitrary. The second solution is more in agreement with the literature (Douglas-Adams memorial
solution).

fun_2 <- function(...) {}

the_answer <- function(...) {

 42L # this is the right answer, irrespective of the arguments!

}

3. Function accepting 1 or 2 arguments

The simple first solution just ignores the 2nd argument. The next one is a solution with a default
argument. The third one checks whether or not the 2nd has been passed (this is possible because of
R's lazy-evaluation mechanism).

fun_3a <- function(a, b) {

 a

2

DSMZ R programming course – Solutions

}

fun_3b <- function(a, b = 3) {

 c(a, b) # arbitrary, but should need both arguments

}

fun_3c <- function(a, b) {

 if (missing(b))

 b <- 3

 c(a, b) # arbitrary, but should need both arguments

}

4. Function with 1-2 arguments, 2nd needed dependent on 1st

This function also demonstrates that if and else have return values.

fun_4 <- function(a, b) {

 if (is.null(a)) # the condition is actually arbitrary but must use 'a'

 b

 else

 a

}

5. Function that returns last argument

By naming 'x', we ensure that at least one argument must is given; hence we avoid indexing with 0.
Note that built-in functions such as list() that accept arbitrary numbers of arguments themselves
ease the use of

fun_5 <- function(x, ...) {

 list(x, ...)[[nargs()]]

}

6. Function that returns randomly selected argument

Like function #5, only some computation on nargs() is needed. The solution with runif() works
because when indexing with numeric values, they are truncated towards 0. The second, even more
elegant solution has been suggested by Jürgen Tomasch; I have just inserted sample.int() instead
of sample().

fun_6a <- function(x, ...) {

 list(x, ...)[[runif(1L, 1L, nargs() + 1L)]]

3

DSMZ R programming course – Solutions

}

fun_6b <- function(x, ...) {

 list(x, ...)[[sample.int(nargs(), 1L)]]

}

7. Function that returns its n-th argument

The following function returns the 3rd argument (the number is arbitrary) and crashes with fewer
arguments.

fun_7 <- function(...) {

 ..3

}

8. Function that returns n-th argument, n being selected by 1st
argument

The first solution avoids creating a list from ... but it uses the ugly eval() construct. Regarding the
third solution, keep in mind that switch() can be passed a numeric first argument; in contrast to
the first two functions, it but does not result in out-of-range errors (it silently returns NULL in such
cases, which might or might not be what you want). All three functions crash with an invalid first
argument.

fun_8a <- function(...) {

 eval(parse(text = sprintf("..%i", ..1)))

}

fun_8b <- function(...) {

 items <- list(...)

 items[-1L][[items[[1L]]]]

}

fun8c <- function(...) {

 switch(...)

}

9. Function whose last argument must be named

Here we must name 'x' because otherwise it is treated as part of '...'.

fun_9 <- function(..., x) {

 x

4

DSMZ R programming course – Solutions

}

10. Function that calculates mean, min, or max

The first solution introduces an important use of switch(). It would here be the best solution but
involves the repetition of the function names. The second solution uses do.call(), which makes
this rather elegant. An enhancement would be to deal with the 'na.rm' argument of each of the three
functions.

fun_10a <- function(x, what = c("mean", "min", "max")) {

 switch(match.arg(what),

 mean = mean(x),

 min = min(x),

 max = max(x)

)

}

fun_10b <- function(x, what = c("mean", "min", "max")) {

 do.call(match.arg(what), list(x))

}

11. Function that calculates a function's arity

We here determine the arity using formals(), which yields all formal arguments as pairlist (which
behaves roughly like a named list). Note the difference between formals() and nargs()!

fun_11 <- function(fun) {

 formal.names <- names(formals(fun))

 if ("..." %in% formal.names)

 Inf

 else

 length(formal.names)

}

12. Function that returns its call

Here format() works much nicer than as.character(). The knowledge of match.call() is
crucial.

fun_12 <- function(...) {

 format(match.call())

5

DSMZ R programming course – Solutions

}

13. Function that returns itself

Here we use as.character() combined with match.call(). The elegance here lies in the fact
that we could rename the function at will but it would still return itself. Somewhat less safe would
be get() instead of match.fun() unless one uses the mode = "function" argument. The
second function uses the built-in solution.

fun_13a <- function(...) {

 match.fun(as.character(match.call())[1L])

}

fun_13b <- function(...) {

 sys.function()

}

14. Function that creates a counter

This example demonstrates how closures can be created in R. You might want to create a function
using fun_14() and then study this function's environment, e.g. counter <- fun_14();
as.list(environment(counter)).

fun_14 <- function(cnt = 1L) {

 cnt <- cnt - 1L

 function(incr = 1L) (cnt <<- cnt + incr)

}

15. Function that reverts the arguments of another one

The first function is more elegant because it uses the predefined getter and setter functions for
formal arguments. The second, more complicated version shows that R is homoiconic insofar as
data structures (lists) and functions can easily be converted to each other.

fun_15a <- function(fun) {

 formals(fun) <- rev(formals(fun))

 fun

}

fun_15b <- function(fun) {

 if (!is.function(fun))

 stop("'fun' must be a function")

 fun <- as.list(fun)

6

DSMZ R programming course – Solutions

 fl <- length(fun) # the last list element holds the function body

 fun <- c(rev(fun[-fl]), fun[fl])

 as.function(fun)

}

Error handling

1. unpercent() with argument checking

Solutions using either stop() or stopifnot(). Note the use of || for short-circuit evaluation
(instead of |) and the use of any() in conjunction with na.rm = TRUE because if crashes if it gets
passed a NA value.

unpercent <- function(x) {

 if (!is.numeric(x))

 stop("'x' must be numeric")

 if (any(y < 0, na.rm = TRUE) || any(y > 100, na.rm = TRUE))

 warning("'x' should be between 0 and 100")

 x / 100

}

unpercent2 <- function(x) {

 stopifnot(is.numeric(x))

 if (any(y < 0, na.rm = TRUE) || any(y > 100, na.rm = TRUE))

 warning("'x' should be between 0 and 100")

 x / 100

}

2. Turn warnings to errors

Note the explicit naming of all explicitly passed arguments because we also pass ... to
tryCatch(). Improvements would include passing other arguments to stop(), such as call., or
allowing other error-message texts.

must <- function(expr, ...) {

 tryCatch(expr = expr,

 warning = function(w) stop(conditionMessage(w)), ...)

}

7

DSMZ R programming course – Solutions

3. Turn errors into their messages

taste <- function(expr, ...) {

 tryCatch(expr = expr, error = conditionMessage, ...)

}

4. Turn warnings into messages

Note the use of on.exit() assuring that global options are reset.

relaxed <- function(expr) {

 ops <- options(warn = -1)

 on.exit(options(ops))

 withCallingHandlers(expr, warning = function(w) {

 message(conditionMessage(w))

 invokeRestart("muffleWarning")

 })

}

Attributes
1. It is not a syntactical name.

2. "George W. Bush"

3. attr(x, “ attribute.name”) <- NULL; attributes(x) <- NULL

1. Getter and setter for an attribute

`feature<-` <- function(x, value) {

 attr(x, "feature") <- value

 x

}

feature <- function(x) {

 attr(x, "feature")

}

2. Attributes of a matrix

The attributes are called “dim” and “dimnames”.

8

DSMZ R programming course – Solutions

3. Attributes of a data frame

The attributes are called “class”, “names” and “rownames”.

4. Turning a matrix to a vector

attr(m, "dim") <- NULL would be sufficient because it removes the “dim” attribute. The
attribute “dimnames” would automatically be deleted because it made no sense any more.

5. Setter function using structure()
`author<-` <- function(x, value) {

 structure(.Data = x, author = value)

}

6. Getter and setter via metaprogramming

set_getter_and_setter <- function(name, pos = 1L, ...) {

 assign(x = name, value = function(x) attr(x, name), pos = pos, ...)

 assign(x = sprintf("%s<-", name), value = function(x, value) {

 attr(x, name) <- value

 x

 }, pos = pos, ...)

 invisible(name) # return value is arbitrary

}

Note the use of invisible(): because we call the function for its side effect, we do not want its
return value to be printed to the screen. (By the way, putting the function call in parentheses would
cause the return value to be printed irrespective of invisible().) An improvement of this function
would be to vectorize it regarding name and perhaps pos:

set_getter_and_setter <- function(names, pos = 1L, ...) {

 getter <- function(name) function(x) attr(x, name)

 setter <- function(name) function(x, value) {

 attr(x, name) <- value

 x

 }

 more <- list(...)

 mapply(assign, names, lapply(names, getter), pos, MoreArgs = more)

9

DSMZ R programming course – Solutions

 mapply(assign, sprintf("%s<-", names), lapply(names, setter), pos,

 MoreArgs = more)

 invisible(names)

}

Implementing a generic “Hello world” function and its methods

1. Hello-world method for numeric vectors

hello_world.numeric <- function(x) {

 # rep.int() does the argument checking for us

 print(rep.int("Hello world!", x))

}

2. Hello-world method for data frames

hello_world.data.frame <- function(x) {

 print(sprintf(

 "Hello world, I am a data frame with %i rows and %i columns!",

 nrow(x), ncol(x)))

}

3. Hello-world method for factors

hello_world.factor <- function(x) {

 hello_world(as.character(x))

}

Implementing a “Hello world” class

1. What do data.frame() , factor() , table() and glm() have in
common?

As usual for S3 constructor functions, they first built a list or vector object together and then add an
explicit class to override the default behaviour of lists and vectors. This is the only way in S3 to
guarantee that classes have the content they are expected to contain: by using only the constructor
functions dedicated for this purpose.

10

DSMZ R programming course – Solutions

2. How does “hello-worldifying” objects change their behaviour?

The “hello.world” print() method is selected, and if the variable name of such an object is
entered at the R prompt, “Hello world!” is printed.

3. What happened if class() replaces oldClass()?

Implicit classes would be set explicitly, even though this is unnecessary and could be confusing.

4. What happened if insert_class() would insert at the end?

The “hello.world” print() method would not be the first choice any more, and the objects'
printing behaviour not necessarily changed.

5. Remove a class name from an S3 object

delete_class <- function(x, klass) {

 if (isS4(x))

 stop("this function is not intended for S4 objects")

 if (length(klass <- as.character(klass)) < 1L)

 stop("empty 'klass' argument")

 # setdiff() would be more invasive

 class(x) <- oldClass(x)[!oldClass(x) %in% klass]

 x

}

unmake_hello_world <- function(x) {

 delete_class(x, "hello_world")

}

6. unclass() vs. delete_class()
In contrast to delete_class(), unclass() removes all explicit classes. If applied to a data frame,
a list is returned, with the data-frame columns as elements.

7. arity() and unpercent() functions as S3 method

The function body can be simplified because automated method dispatch makes certain checks
unnecessary. Note, however, that the previous unpercent() function would also work with
matrices and array; hence, we need to take care of them here, too. Note the trick with [].

arity <- function(fun) UseMethod("arity")

11

DSMZ R programming course – Solutions

arity.function <- fun_11

unpercent <- function(x) UseMethod(“ unpercent”)

unpercent.numeric <- function(x) {

 if (any(y < 0, na.rm = TRUE) || any(y > 100, na.rm = TRUE))

 warning("'x' should be between 0 and 100")

 x / 100

}

unpercent.matrix <- function(x) {

 x[] <- unpercent(as.vector(x))

 x

}

unpercent.array <- function(x) {

 x[] <- unpercent(as.vector(x))

 x

}

8. asqr() in yarp

asqr() apparently only makes sense for numeric data. The default method converts its input via
as.numeric(). The matrix method ensures that the dimensions remain the same. The ... operator
ensures that methods can define additional arguments.

8. box_cox_fun() and box_cox() in yarp

box_cox_fun() creates a function from a numeric value y that would conduct the conversion
defined by y. box_cox() uses such functions to conduct the conversions. If several y are given,
conversions are done for all of them, using lists of functions as intermediate product.

9. box_cox_fun() compared to the “counter” example

Like the counter functions, the result of box_cox_fun() is a function with its own environment,
used for storing either the state of the counter or the y value for the box-cox transformation. These
are examples for so-called closures in R.

12

DSMZ R programming course – Solutions

S3 group generics

1. Effect of helloworldizing a vector

One should get the annoying messages each time one of the functions belonging to the group
generic is called.

2. Ops group generic for “hello.word” class

Ops.hello.world <- function(x, ...) { # example code #11

 message(sprintf("Hello world, let's compute '%s'!", .Generic))

 NextMethod()

}

The effect should be the same as for the Summary group generic but just affect other functions.

Creating R packages

1. Use of the DESCRIPTION file

DESCRIPTION is the master file of a package. It clarifies the title, description, dependencies, and
collating order of the package's R files. Its main entries are copied to the 1st page of the PDF
manual.

2. Use of the NAMESPACE file

The NAMESPACE file explains which functions to export from the package, and which of them are
S3 or S4 methods. All other functions remain package-internal and cannot normally called by a
user, even after loading the package with library().

3. Documentation generation from the Rd file of asqr()
The \name, \alias and \keyword entries are for generating the index of the manual. All other
commands directly compose the manual page for the function.

3. Generation of the Rd file for asqr()
The @family directive creates the \seealso links (to all other functions of the family). @export is
for creating the NAMESPACE entry (see below). @param and @inheritParams go to \arguments.
The remaining directives have direct counterparts in the Rd files. The first lines yields \title, the
next paragraph yields \description.

3. Generation of the NAMESPACE entries for asqr()
@export and @method are necessary here. @method causes S3method() to be written, but only in

13

DSMZ R programming course – Solutions

conjunction with @export. The generic functions need export() in the NAMESPACE file.

3. Hidden helper functions

@keywords internal causes such functions not to be documented. They are not exported because
@export is missing.

3. Re-generating the documentation

Within the “docu.R” script, the call of roxygenize() causes the Rd files to be generated form the
R files. The call of update_pack_desc() updates the DESCRIPTION file. Note the first line, a
Shebang line, which enables one to call the script directly from the command line, without starting
an interactive R session.

4. Running R CMD check

The directory should contain the files “00check.log”, “00install.out”, “Rdlatex.log”, “yarp-Ex.R”,
“yarp-Ex.Rout”, “yarp-Ex.pdf”, “yarp-manual.log”, “yarp-manual.pdf” and the subdirectory “yarp”,
a copy of the package. “yarp-Ex.Rout” contains the results from running the examples.
“00check.log” contains what was also printed to the screen when running R CMD check.

5. Additional files in the opm package

The “data” subdirectory contains example datasets coming with the package to be loaded using
data(). “NEWS” lists the major changes in each novel version. The content of the “inst”
subdirectory is copied without modification to the installation directory when running R CMD
INSTALL.

14

	R from a programmer's perspective
	R as programming language
	R's basic types
	Writing functions in R
	1. Function with no arguments
	2. Function with arbitrary number of arguments
	3. Function accepting 1 or 2 arguments
	4. Function with 1-2 arguments, 2nd needed dependent on 1st
	5. Function that returns last argument
	6. Function that returns randomly selected argument
	7. Function that returns its n-th argument
	8. Function that returns n-th argument, n being selected by 1st argument
	9. Function whose last argument must be named
	10. Function that calculates mean, min, or max
	11. Function that calculates a function's arity
	12. Function that returns its call
	13. Function that returns itself
	14. Function that creates a counter
	15. Function that reverts the arguments of another one

	Error handling
	1. unpercent() with argument checking
	2. Turn warnings to errors
	3. Turn errors into their messages
	4. Turn warnings into messages

	Attributes
	1. Getter and setter for an attribute
	2. Attributes of a matrix
	3. Attributes of a data frame
	4. Turning a matrix to a vector
	5. Setter function using structure()
	6. Getter and setter via metaprogramming

	Implementing a generic “Hello world” function and its methods
	1. Hello-world method for numeric vectors
	2. Hello-world method for data frames
	3. Hello-world method for factors

	Implementing a “Hello world” class
	1. What do data.frame(), factor(), table() and glm() have in common?
	2. How does “hello-worldifying” objects change their behaviour?
	3. What happened if class() replaces oldClass()?
	4. What happened if insert_class() would insert at the end?
	5. Remove a class name from an S3 object
	6. unclass() vs. delete_class()
	7. arity() and unpercent() functions as S3 method
	8. asqr() in yarp
	8. box_cox_fun() and box_cox() in yarp
	9. box_cox_fun() compared to the “counter” example

	S3 group generics
	1. Effect of helloworldizing a vector
	2. Ops group generic for “hello.word” class

	Creating R packages
	1. Use of the DESCRIPTION file
	2. Use of the NAMESPACE file
	3. Documentation generation from the Rd file of asqr()
	3. Generation of the Rd file for asqr()
	3. Generation of the NAMESPACE entries for asqr()
	3. Hidden helper functions
	3. Re-generating the documentation
	4. Running R CMD check
	5. Additional files in the opm package

