Assume you have run only four PM plates of the same plate type. Assume you have tested by this the phenotypes of four biological specimens, e.g. bacterial strains. For each strain one plate was utilised. Unfortunately, you do not have replicate plates per bacterial strain.
In order to assess this, we make use of bootstrapped curve parameters, which allow us to determine a 95 % confidence interval.
The data set wittmann_et_al
contains Generation-III data for numerous
strains of the bacterial species Achromobacter xylosoxidans (see the
respective publication).
Author: Johannes Sikorski
library(opm)
library(opmdata)
data(wittmann_et_al)
wittmann_small <- subset(wittmann_et_al,
query = list(strain = c("CCUG 41513", "CCUG 2203"), replicate = "2")) +
subset(wittmann_et_al,
query = list(strain = c("LMG 7051", "CCUG 48135"), replicate = "1"))
dim(wittmann_small)
## [1] 4 384 96
to_metadata(wittmann_small)
## strain
## 1 CCUG 41513
## 2 CCUG 2203
## 3 CCUG 48135
## 4 LMG 7051
## File
## 1 ./41513second_41513second_41513second_41513second_1_28_PMX_357_6#12#2012_A_19A_2.csv
## 2 ./Johannes_2203_24.8.2012__1_28_PMX_357_8#24#2012_D_22A_17.csv
## 3 ./Johannes_48135_28.08.__1_28_PMX_357_8#28#2012_A_11A_6.csv
## 4 ./CSV/Johannes Wittmann_14.09._7051__1_28_PMX_357_9#14#2012_A_ 8A_4.csv
## city country genus habitat isolated_from replicate
## 1 Wien Austria Achromobacter sputum H. Masoud 2
## 2 Goeteborg Sweden Achromobacter ear discharge unknown 2
## 3 Goeteborg Sweden Achromobacter sputum B. Joensson 1
## 4 unknown England Achromobacter blood unknown 1
## species source year Parameter MLSTcluster
## 1 xylosoxidans medical 1998 AUC Ax1
## 2 xylosoxidans medical 1973 AUC Ax4
## 3 xylosoxidans medical 2003 AUC Ax2
## 4 xylosoxidans medical unknown AUC Ax5
G07 (D-Malic Acid)
xy_plot(wittmann_small[, , "G07"],
include = list("strain"),
col = c("red", "green", "blue", "black"),
legend.fmt = list(space = "right"), lwd = 2, neg.ctrl = 50)
## Warning in if (!nzchar(col)) col <- length(key.text): the condition has
## length > 1 and only the first element will be used
To answer this, we make use of the 95% confidence intervals obtained during aggregation of curve parameters using bootstrap procedures.
LMG
7051, well G07 (D-Malic Acid)
?do_aggr
to learn how to bootstrap during curve parameter
aggregationaggregated(subset(wittmann_small[, , "G07"], list(strain = "LMG 7051")),
full = TRUE)
## G07 (D-Malic Acid)
## mu 11.99564
## lambda 20.05652
## A 263.77953
## AUC 17034.91392
## mu CI95 low 11.29121
## lambda CI95 low 19.63558
## A CI95 low 263.19078
## AUC CI95 low 17020.10469
## mu CI95 high 12.70007
## lambda CI95 high 20.47746
## A CI95 high 264.36829
## AUC CI95 high 17049.72315
ci_plot(wittmann_small[, , "G07"], as.labels = "strain",
subset = "A", x = "topright", legend.field = NULL, cex = 0.8)
CCUG
41513 and CCUG
2203 can not be distinguished by their
maximum height (A)LMG
7051 and CCUG
48135 can not be
distinguished by AAUC
)ci_plot(wittmann_small[, , "G07"], as.labels = "strain",
subset = "AUC", x = "topright", legend.field = NULL, cex = 0.8)
AUC
valuesci_plot(wittmann_small[, , "G07"], as.labels = "strain",
subset = "mu", x = "topright", legend.field = NULL, cex = 0.8)
ci_plot(wittmann_small[, , "G07"], as.labels = "strain",
subset = "lambda", x = "topleft", legend.field = NULL, cex = 0.8)
LMG
7051 and CCUG
2203 can not be distinguished by their
lag phase lengthEven if no experimental replicates exist, very similar curve topologies can be tested for differences in aggregated curve parameters using 95% confidence interval values derived from bootstrapping.