Assume you have run only four PM plates of the same plate type. Assume you have tested by this the phenotypes of four biological specimens, e.g. bacterial strains. For each strain one plate was utilised. Unfortunately, you do not have replicate plates per bacterial strain.
In order to assess this, we make use of bootstrapped curve parameters, which allow us to determine a 95 % confidence interval.
The data set wittmann_et_al contains Generation-III data for numerous
strains of the bacterial species Achromobacter xylosoxidans (see the
respective publication).
Author: Johannes Sikorski
library(opm)
library(opmdata)
data(wittmann_et_al)
wittmann_small <- subset(wittmann_et_al,
    query = list(strain = c("CCUG 41513", "CCUG 2203"), replicate = "2")) +
  subset(wittmann_et_al,
    query = list(strain = c("LMG 7051", "CCUG 48135"), replicate = "1"))
dim(wittmann_small)
## [1]   4 384  96
to_metadata(wittmann_small)
##       strain
## 1 CCUG 41513
## 2  CCUG 2203
## 3 CCUG 48135
## 4   LMG 7051
##                                                                                   File
## 1 ./41513second_41513second_41513second_41513second_1_28_PMX_357_6#12#2012_A_19A_2.csv
## 2                       ./Johannes_2203_24.8.2012__1_28_PMX_357_8#24#2012_D_22A_17.csv
## 3                          ./Johannes_48135_28.08.__1_28_PMX_357_8#28#2012_A_11A_6.csv
## 4              ./CSV/Johannes Wittmann_14.09._7051__1_28_PMX_357_9#14#2012_A_ 8A_4.csv
##        city country         genus       habitat isolated_from replicate
## 1      Wien Austria Achromobacter        sputum     H. Masoud         2
## 2 Goeteborg  Sweden Achromobacter ear discharge       unknown         2
## 3 Goeteborg  Sweden Achromobacter        sputum   B. Joensson         1
## 4   unknown England Achromobacter         blood       unknown         1
##        species  source    year Parameter MLSTcluster
## 1 xylosoxidans medical    1998       AUC         Ax1
## 2 xylosoxidans medical    1973       AUC         Ax4
## 3 xylosoxidans medical    2003       AUC         Ax2
## 4 xylosoxidans medical unknown       AUC         Ax5
G07 (D-Malic Acid)xy_plot(wittmann_small[, , "G07"],
  include = list("strain"),
  col = c("red", "green", "blue", "black"),
  legend.fmt = list(space = "right"), lwd = 2, neg.ctrl = 50)
## Warning in if (!nzchar(col)) col <- length(key.text): the condition has
## length > 1 and only the first element will be used
 
To answer this, we make use of the 95% confidence intervals obtained during aggregation of curve parameters using bootstrap procedures.
LMG 7051, well G07 (D-Malic Acid)?do_aggr to learn how to bootstrap during curve parameter
aggregationaggregated(subset(wittmann_small[, , "G07"], list(strain = "LMG 7051")),
  full = TRUE)
##                  G07 (D-Malic Acid)
## mu                         11.99564
## lambda                     20.05652
## A                         263.77953
## AUC                     17034.91392
## mu CI95 low                11.29121
## lambda CI95 low            19.63558
## A CI95 low                263.19078
## AUC CI95 low            17020.10469
## mu CI95 high               12.70007
## lambda CI95 high           20.47746
## A CI95 high               264.36829
## AUC CI95 high           17049.72315
ci_plot(wittmann_small[, , "G07"], as.labels = "strain",
  subset = "A", x = "topright", legend.field = NULL, cex = 0.8)
 
CCUG 41513 and CCUG 2203 can not be distinguished by their
maximum height (A)LMG 7051 and CCUG 48135 can not be
distinguished by AAUC)ci_plot(wittmann_small[, , "G07"], as.labels = "strain",
  subset = "AUC", x = "topright", legend.field = NULL, cex = 0.8)
 
AUC valuesci_plot(wittmann_small[, , "G07"], as.labels = "strain",
  subset = "mu", x = "topright", legend.field = NULL, cex = 0.8)
 
ci_plot(wittmann_small[, , "G07"], as.labels = "strain",
  subset = "lambda", x = "topleft", legend.field = NULL, cex = 0.8)
 
LMG 7051 and CCUG 2203 can not be distinguished by their
lag phase lengthEven if no experimental replicates exist, very similar curve topologies can be tested for differences in aggregated curve parameters using 95% confidence interval values derived from bootstrapping.